
Keysight Technologies ESA-E Series Spectrum Analyzer

Introduction

Customers wanting to take advantage of the ESA flexibility, but who need a faster analyzer for the manufacturing line, or connectivity to LAN/USB in addition to GPIB, or want to do in depth signal analysis with 89600 VSA software, will benefit from the Keysight Technologies, Inc. EXA signal analyzer. For comparison convenience, the EXA specifications are shown in this ESA-E data sheet.

Customers looking for a general-purpose spectrum analyzer will appreciate the flexibility of the Keysight ESA-E Series spectrum analyzer, which can be used for a wide range of applications from aerospace and defense to the manufacturing line. With express analyzer configurations (STD/STG/COM), customers will benefit from faster delivery and its price advantage.

Table of Contents

- Definition of Specifications
- ESA-E Express Analyzer
- Options
- Frequency Specifications
- Amplitude Specifications
- Tracking Generator
- Quasi-Peak Detector
- General Specifications

Definition of Specifications

The ESA-E Series spectrum analyzers are tested to ensure they will meet their warranted performance. Unless otherwise stated, all specifications are valid over 0 to 55 °C. Supplemental characteristics, shown in italics, are intended to provide additional information that is useful in using the instrument. These typical (expected) or nominal performance parameters are not warranted but represent performance that 80 percent of the units tested exhibit with 95 percent confidence at room temperature (20 to 30 °C). This data sheet is intended as a quick reference to ESA-E spectrum analyzer specifications, and is by no means complete.

ESA-E Express Analyzer Options

The ESA-E Series spectrum analyzers have three express analyzer options: STD, STG, and COM.

ESA standard express analyzers (STD/ STG): All standard express analyzers include fast time domain sweep, FM demodulation, and GPIB connection. To add the functionality of a tracking generator, only available on the ESA, order the STG option.

ESA communication express analyzers (COM): The ESA communication analyzer includes many additional options required to demodulate select wireless standards. The EXA X-Series signal analyzer is a great alternative to the ESA-COM express analyzer. All demodulation hardware and speed advantages are standard. In addition, the EXA can run the 89600 VSA software internally to demodulate even the most difficult wireless signals. For a lower cost VSA alternative, many customers are now using the N9064A VXA measurement application for their remote demodulation needs with SCPI programming. The N9064A is only available on the X-Series signal analyzers and is not offered on the ESA spectrum analyzer.

This data sheet is a summary of the complete specifications and conditions, which are available in their entirety in the ESA Specification Guide and EXA Specification Guide. Each of these guides can be found online at www.keysight.com by searching for their respective publication numbers: E4401-90490 or N9010-90012.

Frequency Specifications

ESA-E spectrum analyzer		EXA signal analyzer (Comparable model number)	
Frequency range	Model	Frequency range	Model
9 kHz to 3.0 GHz	E4402B	10 Hz to 3.6 GHz	N9010A-503
9 kHz to 6.7 GHz	E4404B	10 Hz to 7.0 GHz	N9010A-507
9 kHz to 13.2 GHz	E4405B	10 Hz to 13.6 GHz	N9010A-513
9 kHz to 26.5 GHz	E4407B	10 Hz to 26.5 GHz	N9010A-526
	NA	10 Hz to 32.0 GHz	N9010A-532
	NA	10 Hz to 44.0 GHz	N9010A-544

Band break

ESA-E spectrum analyzer		EXA signal analyzer				
Frequency range	Band	Harmonic ^(Na) mixing mode	Frequency range	Band	Options	Harmonic ^(Nb) mixing mode
100 Hz to 3.0 GHz	0	1-	10 Hz to 3.6 GHz	0	503, 507, 513, 526, 532, 544	1-
2.85 to 6.7 GHz	1	1-	3.5 to 7.0 GHz	1	507	1-
6.2 to 13.2 GHz	2	2-	3.5 to 8.4 GHz	1	513, 526, 532, 544	1-
12.8 to 19.2 GHz	3	4-	8.3 to 13.6 GHz	2	513, 526, 532, 544	1- (LO doubled)
18.7 to 26.5 GHz	4	4-	13.5 to 17.1 GHz	3	526, 532, 544	2-
			17.0 to 26.5 GHz	4	526, 532, 544	2- (LO doubled)
			26.4 to 32.0 GHz	5	532	2- (LO doubled)
			26.4 to 34.5 GHz	5	544	2- (LO doubled)
			34.4 to 44.0 GHz	6	544	4- (LO doubled)

Measurement speed

Local measurement and display update rate	33 ms, (30/s)	Local measurement and display update rate	4 ms (250/s)
Remote measurement and GPIB transfer rate	33 ms, (30/s)	Remote measurement and LAN transfer rate	5 ms (200/s)
Marker peak search	300 ms	Marker peak search	1.5 ms
Center frequency tune and transfer (RF)	< 90 ms	Center frequency tune and transfer (RF)	20 ms
Center frequency tune and transfer (µW)	350 ms	Center frequency tune and transfer (µW)	47 ms

a. N is the harmonic mixing mode. For negative mixing modes (as indicated by the "-"), the desired first LO harmonic is higher than the tuned frequency by the first IF (3.9214 for the 9 kHz to 3 GHz band, 321.4 MHz for all other bands.)

b. N is the harmonic mixing mode. For negative mixing modes (as indicated by the "-"), the desired first LO harmonic is higher than the tuned frequency by the first IF (5.1225 GHz for band 0, 322.5 MHz for all other bands.

ESA-E spectrum analyzer		EXA signal analyzer		
STD/STG standard express analyzer	COM express ana- lyzer or ESA-E with Option 1D5	N9010A any frequency r	ange	
±[(aging rate x time since last adjustment) + settability		Frequency reference acc ±[(aging rate x time since + temperature stability +	e last adjustment)	
Frequency readout accuracy (start, stop, center, marker) = ±(frequency indication x frequency reference error + SP ^a + 15% of RBW + 10 Hz + 1 Hz x N ^b)			racy = ±(marker frequency accuracy + 0.25% x span + x horizontal resolution°)	
±2 x 10–6/year ±1 x 10–7/year (Option 1D5)	±1 x 10–7/year	Option PFR ±1 x 10–7/year ±1.5 x 10–7/2 years	Standard ±1 x 10–6/year	
±5 x 10–6 ±1 x 10–8 ^d (Option 1D5)	±1 x 10-8 ^d	Option PFR ±1.5 x 10-8	Standard ±2 x 10–6	
±5 x 10–7 ±1 x 10–8 (Option 1D5)	±1 x 10-8	Option PFR ±4 x 10–8	Standard ±1.4 x 10-6	
[0.5% + 1/ (sweep points - 1)] x span				
10 MHz	1 to 30 MHz			
		±(marker frequency x fre + 0.100 Hz)	equency reference accuracy	
Selectable from 1 Hz to 100 kHz		0.001 Hz		
0 Hz (zero span), 100 Hz to maximum frequency range of the instrument		0 Hz (zero span), 10 Hz to maximum frequency of instrument		
Linear scale = ±[0.5% x span + 2 x span/(sweep points - 1)]		Swept = ±(0.25% x span + horizontal resolution)		
Log scale = 2% of span, nominal		FFT = ±(0.10% x span + horizontal resolution)		
	STD/STG standard express analyzer Frequency reference error = $\pm [(aging rate x time since last adj$ + temperature stability] Frequency readout accuracy (sta marker) = $\pm (frequency indication)$ error + SP ^a + 15% of RBW + 10 H $\pm 2 \times 10-6/year$ $\pm 1 \times 10-7/year$ (Option 1D5) $\pm 5 \times 10-6$ $\pm 1 \times 10-8 d$ (Option 1D5) $\pm 5 \times 10-7$ $\pm 1 \times 10-8 (Option 1D5)$ [0.5% + 1/ (sweep points - 1)] x span 10 MHz $\pm (marker frequency x frequency no counter resolution) Counter reso from 1 Hz to 100 kHz Selectable from 1 Hz to 100 kHz 0 Hz (zero span), 100 Hz to maxir of the instrument Linear scale = \pm [0.5\% \times span + 2 - 1)]$	STD/STG standard express analyzerCOM express analyzer or ESA-E with Option 1D5Frequency reference error = ±[(aging rate x time since last adjustment) + settability + temperature stability]Frequency readout accuracy (start, stop, center, marker) = ±(frequency indication x frequency reference error + SP* + 15% of RBW + 10 Hz + 1 Hz x N*)±2 x 10-6/year ±1 x 10-7/year (Option 1D5)±1 x 10-7/year±5 x 10-6 ±1 x 10-8 (Option 1D5)±1 x 10-8 d±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8[0.5% + 1/ (sweep points - 1)] x span1 to 30 MHz10 MHz1 to 30 MHz±(marker frequency x frequency reference error + counter resolution) Counter resolution = selectable from 1 Hz to 100 kHzSelectable from 1 Hz to 100 kHz0 Hz (zero span), 100 Hz to maximum frequency range of the instrumentLinear scale = ±[0.5% x span + 2 x span/(sweep points - 1)]	STD/STG standard express analyzerCOM express analyzer or ESA-E with Option 1D5N9010A any frequency reFrequency reference error = ±[(aging rate x time since last adjustment) + settability + temperature stability]Frequency reference acc ±[(aging rate x time since tability + temperature stability]Frequency reference acc ±[(aging rate x time since tability + temperature stability]Frequency readout accuracy (start, stop, center, marker) = ±(frequency indication x frequency reference error + SP* + 15% of RBW + 10 Hz + 1 Hz x N*)Frequency readout accu x frequency of reference 5% of RBW + 2 Hz + 0.5±2 x 10-6/year ±1 x 10-7/year (Option 1D5)±1 x 10-7/yearOption PFR ±1.5 x 10-7/2 years ±1.5 x 10-7±5 x 10-6 ±1 x 10-8 d0ption PFR ±1.5 x 10-7Option PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 d±1 x 10-8 dOption PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Option PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Uption PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Option PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Uption PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Option PFR ±1.5 x 10-8±5 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Uption PFR ±1.5 x 10-8±6 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Option PFR ±1.5 x 10-8±6 x 10-7 ±1 x 10-8 (Option 1D5)±1 x 10-8Uption PFR ±1.5 x 10-8±1 x 10-7 (sweep points - 1)] x span0 NHz0 NHz	

a. +5% of span + . Sweep points fixed at 401 for basic analyzer.

b. N is the harmonic mixing mode. For negative mixing modes (as indicated by the "-"), the desired first LO harmonic is higher than the tuned frequency by the first IF (3.9214 for the 9 kHz to 3 GHz band, 321.4 MHz for all other bands.)

c. Horizontal resolution is span/(sweep points - 1.)

d. 20 to 30 °C.

e. Not available in RBW < 1 kHz (Option 1DR.)

		ESA-E spectrum analyzer		EXA signal analyzer	
		STD/STG standard express ana- lyzer or ESA-E with Option AYX	COM express analyzer or ESA-E with Option B7D/B7E	N9010A any frequency range	
Sweep t	time and trigger				
	Span = 0 Hz	50 nsª to 4000 s	25 nsª to 4000 s	1 μs to 6000 s	
Range	Span ≥ 100 Hz (ESA) Span ≥ 10 Hz (EXA)	1 ms to 4000 s	1 ms to 4000 s		
Accuracy (Span = 0 Hz)		±1%	±0.01% nominal		
Trigger t	type ^b	Free run, single, line, video, offset	t, delayed, external	Free run, line, video, external 1, external 2, RF burst, periodic timer	
Time ga	ting	Gate (1D6)		Gated LO, gated video, gated FFT	
Burst tri	igger	NA	RF burst (B7E)	Standard	
Sweep ((trace) points				
	Span = 0 Hz	2 to 8192		1 to 40,001	
Range	Span ≥ 100 Hz (ESA) Span ≥ 10 Hz (EXA)	101 to 8192		1 to 40,001	

a. RBW \geq 1 kHz, 2 sweep points. b. TV trigger available with Option B7B in custom configuration for ESA-E.

		ESA-E spectrum anal	yzer	EXA signal analyzer		
		STD/STG standard express analyzer	COM express ana- lyzer or ESA-E with Option 1DR and 1D5			
Bandwidth				'		
	–3 dB –6 dB EMI	1 kHz to 5 MHzª 9 kHz, 120 kHz	1 Hz to 5 MHzª 200 Hz, 9 kHz, 120 kHz	N/A 200 MHz, 9 kHz, 120 kHz, 1 MHz (Opt EMC or N6141A required)		
	-3.01 dB			1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 MHz		
-3 dB	With 1DR ^b −3 dB −6 dB EMI	Add 10 Hz - 300 Hz Add 200 Hz	Included	Narrow RBW is standard in the EXA.		
	With 1DR and 1D5°	Add 1 Hz and 3 Hz	Included	– Values are same as above		
Resolution b	andwidth accu	racy	1	1		
	1 to 300 Hz	±10%		1 Hz to 750 kHz	±1.0% (±0.044 dB)	
	1 kHz to 3 MHz	±15%		820 kHz to 1.2 MHz (< 3.6 GHz CF)	±2.0% (±0.088 dB)	
Bandwidth	5 MHz	±30%		1.3 to 2.0 MHz (< 3.6 GHz CF)	±0.07 dB nominal	
				2.2 to 3 MHz (< 3.6 GHz CF)	±0.15 dB nominal	
		4 to 8 MHz (< 3.6 GHz CF)	±0.25 dB nominal			
Selectivity (60 dB/3 dB) bar	ndwidth ratio				
	100.					

Pandwidth	100 to 300 Hz	< 5:1 digital, approximately Gaussian	4.1:1 nominal (all frequency ranges)		
Bandwidth	1 kHz to 5 MHz	< 15:1 synchronously tuned four poles, ap- proximately Gaussian			
		Video bandwidths (1-3-10 sequence)	Video bandwidth range		
Range with 1DR		30 Hz to 3 MHz. Adds 1, 3, 10 Hz for RBWs less than 1 kHz	Narrow RBW is standard in the EXA	1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 MHz, and wide open (labeled 50 MHz)	

a. For resolution bandwidths < 1 kHz or > 3 MHz, not compatible with the rms detector.

b. Only available for spans < 5MHz.

c. Firmware revision A.08.00 and later.

	ESA-E spectrum analyzer		EXA signal analyzer	
	STD/STG/COM express analyzers	ESA-E with Option 120ª	All EXA configurations	
Noise sidebands (Phase noise)				
	CF = 1 GHz, 1 kHz RBW, 30 Hz VBW, sample detector, with signal ≤ –90 dBc/Hz from peak of the carrier		CF = 1 GHz	
Offset from carrier signal				
10 kHz	–98, –101 dBc/Hz (Option 1D5) ^b	NA	–101 dBc/Hz –105 dBc/Hz	
100 kHz	–118, –122 dBc/Hz	NA	-114 dBc/Hz -117 dBc/Hz	
1 MHz	–125, –127 dBc/Hz –133, –136 dBc/Hz		–134 dBc/Hz –137 dBc/Hz	
10 MHz	–131, –136 dBc/Hz	–137, –141 dBc/Hz	–148 dBc/Hz (nominal)	
Residual FM (peak-to-peak)				
1 kHz RBW and 1 kHz VBW (measurement time)	≤ 150 Hz x N° (100 ms) ≤ 10 Option 1DR ≤ 2 Hz peak-to Option 1DR and 1D5		Option PFR	≤ 0.25 Hz x N° (20 ms nominal)
Option 1D5 only 100 ms	≤ 100 Hz x N°		Standard	≤ 10 Hz x N° (20 ms nominal)
Option 1DR only 20 ms	≤ 10 Hz x N°	≤ 10 Hz x N ^c		
Option 1DR and 1D5 only 20 ms	≤ 2 Hz peak-to-peak x N°	≤ 2 Hz peak-to-peak x N°		
			1	

a. Enhanced wide offset phase noise and ACPR dynamic range.

b. Option 1DR is required for phase noise measurements at frequency offsets of 10 kHz and less.

Performance at 10 kHz offset without Option 1DR is -90 dBc/Hz.

c. N = LO Harmonic mixing number.

Amplitude Specifications

		ESA spectrum analyzer			EXA signal analzyer	
		E4402B	E4404B/05B	E4407B	All frequency ranges	
Amplitude range			1	1	1	
Measurement range Displayed anverage noise level (DANL) to maximum safe input level		Displayed anverage noise level (DANL) to +23 dBm				
Mechanical input attenuator range		0 to 75 dB in 5 dB steps			Standard	0 to 60 dB in 10 dB steps
					Option FSA	0 to 60 dB in 2 dB steps
Electronic input attenuator range					Option EA3	0 to 24 dB in 1 dB steps
					Full attenuation range with EA3ª	0 to 84 dB in 1 dB steps
Maximum safe inj	put level				-	
Average continuo	us power	+30 dBm (1 W)			+30 dBm (1 W)	
Peak pulse power		+50 dBm (100 W) ^ь			< 10 µs pulse width, < 1% duty cycle + 50 dBm (100 W) and input attenuation ≥ 30 dB	
DQualtaga	DC coupled	0 Vdc (Option UKB)	0 Vdc	0 Vdc	±0.2 Vdc	
DC voltage	AC coupled	100 Vdc 50 Vdc (Option UKB)	50 Vdc	50 Vdc (Option UKB)	±100 Vdc	
1 dB gain compre Total power at inp		Two tone)			
50 MHz to 6.7 GH:	0 MHz to 6.7 GHz 0 dBm			Preamp on (PO3) 10 MHz to 3.6 GHz	–14 dBm nominal	
6.7 to 13.2 GHz		-3 dBm			– 20 MHz to 26.5 GHz	0.15
6.7 to 13.2 GHz	13.2 to 26.5 GHz		–5 dBm			+9 dBm nominal

a. Full attenuation range 0 to 84 dB is mechanical + electronic attenuation.

b. < 10 μ s pulse width, < 1% duty cycle. c. Mixer power level (dBm) = input power (dBm) - input attenuation (dB).

Amplitude Specifications (continued)

	ESA spectrum analyze	EXA signal analyzer						
	STD/STG express analyzer		COM express analyzer or ESA with 1DR and 1D5		RF/μW (Option 503, 507, 513 or 526)			
	E4402B	E4404/05B/07B	E4402B E4404/05/7B					
	Displayed average noise level (dBm) (input terminated, 0 dB attenuation, sample detector) specifications Typical values shown in italic							
Conditions	10 Hz RBW/1 Hz VBW (Option 1DR)		1 Hz RBW/VBW (ESA and 1D5)	A with Option 1DR				
Frequency			·					
1 to 10 MHz	-139	–137, –139ª	-146, -149ª	–147, –149ª	-147, -149			
10 to 500 MHz	136, -140	-135, -139		-149				
500 MHz - 1 GHz	130, -140	-135, -139		-145	148, -150			
1 to 1.5 GHz	— -135, -140		-150	-150	-140, -150			
1.5 to 2 GHz			-150					
2 to 3 GHz	-133, -140	-131, -138		-148	-147, -149			
3 to 6 GHz		-131, -130		1-148	-147, -149			
6 to 12 GHz		–130, –137		-147	-143, -147			
12 to 22 GHz	- NA	-126, -134	NA	-144	-137, -142			
22 to 26.5 GHz		-125, -132		-142	-134, -140			
Displayed average	noise level (dBm) with	RF preamplifier ^b						
1 to 10 MHz	-152	-155	-162	-165	–161 dBm (nominal)			
10 MHz to 1 GHz	152, -156	-151, -157	-166	-167	-161, -163			
1 to 2 GHz	-102, -100	–151, –155		-165	-101, -103			
2 to 3 GHz	–151, –154	-149, -152	-164	-162	-160, -162			

a. Custom path only, Option 120, typical. b. 20 to 30 °C. For 0 to 50 °C range see specification guide.

Amplitude Specifications (continued)

	ESA-E spectrum analyzer			
	(express or custom configuration)	EXA signal analyzer		
Spurious responses Typical value	ues shown in italic			
Third order intermodulation distortion (TOI) ^a	For two –30 dBm signals at input mixer ^b and > 50 kHz separation	For two –30 dBm signals at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to 30 °C, see specification guide for IF prefilter bandwidths		
10 to 100 MHz	7 dBm, characteristic	NA		
100 to 400 MHz		< -86 dBc, +13 dBm, +17 dBm		
400 MHz to 1. 7 GHz	- < -85 dBc, +12.5 dBm; +16 dBm			
1.7 to 3.0 GHz				
3.0 to 3. 6 GHz	- < -82 dBc, +11 dBm; +18 dBm			
3.6 to 6.7 GHz	< -oz udc, +11 udiii, +10 udiii	< -88 dBc, +14 dBm, +18 dBm		
6.7 to 7.0 GHz	- < -75 dBc, +7.5 dBm; +12 dBm			
7.0 to 13.2 GHz	- < -/5 ubc, +/.5 ubiii, +12 ubiii			
13.2 to 13.6 GHz	- < -75 dBc, +7.5 dBm; +11 dBm			
13.6 to 26.5 GHz	- < -/5 ubc, +/.5 ubiii, +11 ubiii	< -84 dBc, +12 dBm, +16 dBm		
Second harmonic distortion				
2 to 750 MHz - 40 dBm tone at input mixer ^a		See EXA Data Sheet or EXA Specification Guide for SHI details		
10 to 500 MHz - 30 dBm tone at input mixerª	< -65 dBc, +35 dBm SHI			
500 MHz to 1.5 GHz - 30 dBm tone at input mixerª	< -75 dBc, +45 dBm SHI			
1.5 to 2.0 GHz - 10 dBm tone at input mixerª	< –85 dBc, +75 dBm SHI			
> 2 GHz - 10 dBm tone at input mixerª	< -100 dBc, +90 dBm SHI			

a. TOI = mixer tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc. b. Mixer power level (dBm) = input power (dBm) - input attenuation (dB).

Amplitude Specifications (continued)

	ESA spectrum analyzer	EXA signal analyzer				
				iency ranges		
Display range						
Log scale	0.1, 0.2, 0.5 dB/division 1 to 20 dB/division in 1 dB steps (1 sions)	10 display divi-		3/division in 0.1 dB steps /division in 1 dB steps (10 d	isplay divisions)	
Linear scale	10 divisions		10 divisior	IS		
Scale units	dBm, dBmV, dBµV, dBµA, A, V, W, BAA or AYQ)	and Hz (Option	dBm, dBm	V, dBµV, dBmA, dBµA, V, W	, and A	
Trace detectors	Peak, negative peak, sample, rmst	o, video averaging		ative peak, sample, normal, average, RMS average, and	voltage average	
	ESA spectrum analyzer			EXA signal analyzer		
	Standard analyzer or ESA with Option AYX	Communications analyzer or ESA v B7D/B7E		All frequency ranges		
Resolution bandw	dth switching uncertainty					
	Referenced to 1 kHz at refer	rence level		Referenced to 30 kHz RBW		
1 Hz, 3 Hz RBW	±0.3 dB (Option 1DR, Option 1D5)	±0.3 dB (Option 1	ID5)			
10 Hz, 30 Hz RBW	±0.3 dB (Option 1DR)	±0.3 dB				
100 Hz, 300 Hz RB	W ±0.3 dB (Option 1DR)	±0.3 dB		1 Hz to 3 MHz RBW	± 0.10 dB	
1 kHz to 1.5 MHz R						
1.5 to 3 MHz RBW	±0.3 ab	0.3 dB				
5 MHz RBW	±0.6 dB			4, 5, 6, 8 MHz RBW	±1.0 dB	

Amplitude Specifications (continued)

ESA spectrum analyzer	EXA signal analyzer
Express analyzer or custom analyzer configuration	RF/μW (Option 503, 507, 513 or 526)

Frequency resolution

Input attenuator switching uncertainty (at 50 MHz)

ESA specifications va attenuation settings	ry with	EXA specifications vary with f	requency range
Attenuator setting		Frequency range	Nominal numbers
0 to 5 dB	±0.3 dB	9 kHz to 3.6 GHz	±0.3 dB
10 dB	Reference	3.5 to 7.0 GHz	±0.5 dB
15 to 60 dB	±(0.1 dB + 0.01 x attenuator setting)	7.0 to 13.6 GHz	±0.7 dB
		13.5 to 26.5 GHz	±0.7 dB

Frequency response (10 dB input attenuation)

	100 Hz to 9 kHzª	±0.5 dB	100 Hz to 9 kHz	NA
		±0.46 dB	9 kHz to 10 MHz	±0.8 dB
9 kHz to 3 GHz ±0.5 dB (Option UKB)	10 to 3.6 MHz	±0.6 dB		
	3 to 6.7 GHz	±1.5 dB	3.5 to 7.0 GHz	±2.0 dB
	6.7 to 13.2 GHz	±2 dB	7.0 to 13.6 GHz	±2.5 dB
13.2 to 26.5 GHz	±2 dB	13.5 to 22.0 GHz	±3.0 dB	
		22.0 to 26.5 GHz	±3.2 dB	

Absolute amplitude accuracy

,			
At reference set- tings ^b	±0.34 dB, ±0.13 dB	At reference setting, 50 MHz	±0.40 dB
Preamp on	±0.37 dB, ±0.14 dB	Preamp on (100 kHz to 3.6 GHz)	±(0.39 dB + frequency response)
Overall amplitude accuracy ^c	±(0.54 dB + absolute frequency response)	At all frequencies	±(0.40 dB + frequency response)
95% confidence ^d	±0.4 dB (95%)	9 kHz to 3.6 GHz (95% confidence)	±0.27 dB

a. Custom path, Option UKB typical.

- b. Settings are: reference level –25 dBm; (75 Ω reference level +28.75 dBmV); input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; amplitude scale linear or log; span 2 kHz; frequency scale linear; sweep time coupled, sample detector, signal at reference level.
- c. For reference level 0 to −50 dBm; input attenuation 10 dB; RBW 1 kHz; VBW 1 kHz; amplitude scale log, log range 0 to −50 dB from reference level; frequency scale linear; sweep time coupled; signal input 0 to −50 dBm; span ≤ 20 kHz (20 to 30 °C).
- d. Input frequency < 3GHz; -50 dBm ≤ input power ≤ 0 dBm; -50 dBm ≤ reference level ≤ 0 dBm; -20 dB ≤ input power reference level ≤ 0 dB; input attenuation = 10 dB; 10 Hz ≤ RBW ≤ 1 MHz (20 to 30 °C). Computed from the observation of a statistically significant number of instruments. Observations of the 50 MHz amplitude accuracy, a component of the computation of this number is performed immediately after invoking RF and IF alignments to minimize the effects of alignment drifts.</p>

Amplitude Specifications (continued)

	ESA spectrum analyzer	EXA signal analyzer
	Express analyzer or custom analyzer configuration	All frequency ranges
Display scale fidelity Typical values sho	wn in italic	
> 0 to 10 dB	±0.3 dB, ±0.08 dB	
> 10 to 20 dB	±0.4 dB, ±0.09 dB	
> 20 to 30 dB	±0.5 dB, ±0.1 dB	
> 30 to 40 dB	±0.6 dB, ±0.23 dB	±0.15 dB
> 40 to 50 dB	±0.7 dB, ±0.35 dB	±0.15 UD
> 50 to 60 dB	±0.7 dB, ±0.35 dB	
> 60 to 70 dB	±0.8 dB, ±0.39 dB	
> 70 to 80 dB	±0.8 dB, ±0.46 dB	
> 80 to 85 dB	±1.15 dB, ±0.79 dB	NA
Residual responses (input terminated an	d 0 dB attenuation)	
$50\Omega\text{RF}$ input impedance		
150 kHz to 1.5 GHz/6.7 GHzª	< -90 dBm	
200 kHz to 8.4 GHz (swept)		-100 dBm

a. Up to 1.5 GHz for E4402B. Up to 6.7 GHz for E4404B/05B/07B.

Tracking Generator

In order to gain tracking generator functionality, Option 1DN or express analyzer Option STG must be ordered with an ESA-E spectrum analyzer. Tracking generator functionality is not available on the EXA signal analyzer.

EXA offers Option ESC (external source control) for the scaler stimulus-response tests.

For other low cost tracking generator alternatives to the ESA spectrum analyzer customers should consider one of the following instruments:

- N9000A CXA signal analyzer
- N9340A handheld RF
- spectrum analyzer
- N9320B RF spectrum analyzer

Tracking generator specifications (Options 1DN and STG)

	E4402B/04B/05B/07B
Frequency range	9 kHz to 3.0 GHz
RBW range	1 kHz to 5 MHz
Output power level range	–2 to –66 dBm
Output vernier range	8 dB
Output attenuator range	O to 56 dB, 8 dB steps
Output flatness	
9 kHz to 10 MHz	±3.0 dB
10 MHz to 3.0 GHz	±2.0 dB
Effective source match (characteristic)	
	< 2.0:1 (0 dB attenuator)
	< 1.5:1 (8 dB attenuator)
Spurious output	
20 kHz to 3 GHz (–1 dBm output)	< -25 dBc
Non-harmonic spurs	
9 kHz to 2 GHz	< -27 dBc
2 to 3 GHz	< -23 dBc
Dynamic range	Maximum output power - displayed average noise level
Output power sweep range	(-10 to -2 dBm) - (source attenuator setting)

Quasi-Peak Detector

Add a quasi-peak detector, Option AYQ, to the ESA-E custom analyzer configuration. Option AYO also includes FM demodulation capability. The quasi-peak detector displays the quasi-peak amplitude of a pulse radio frequency on continuous wave signals. Amplitude response conforms to Publication 16 of the Comite International Special des Perturbations Radioelectrique (CISPR) Section 1, Clause 2, as indicated in the relative quasi-peak response table.

The EXA signal analyzer gains quasi-peak functionality with Option EMC. For more information refer to the **EXA Specification Guide** literature number: N9010-90012.

ESA Custom configuration with Option AYQ (requires Option 1DR)

Relative quasi-peak response to a CISPR pulse (dB)

Pulse repetition frequency (Hz)		
	120 kHz EMI BW 0.03 to 1 GHz	9 kHz EMI BW 0.150 to 30 MHz	200 Hz EMI BW 9 to 150 kHz
1000	+8.0 ±1.0	+4.5 ±1.0	NA
100	0 dB referenceª	0 dB reference ^a	+4.0 ±1.0
60	NA	NA	+3.0 ±1.0
25	NA	NA	0 dB reference ^a
20	-9.0 ±1.0	-6.5 ±1.0	NA
10	-14 ±1.5	-10.0 ±1.5	-4.0 ±1.0
5	NA	NA	-7.5 ±1.5
2	-26 ±2.0	-20.5 ±2.0	-13.0 ±2.0
1	NA	-22.5 ±2.0	-17.0 ±2.0
Isolated pulse	NA	-23.5 ±2.0	-19.0 ±2.0

.

a. Reference pulse amplitude accuracy relative a 66 μV CW signal < 1.5 dB as specified in CISPR Pub 16 CISPR reference pulse: 0.44 μ Vs for 30 MHz to 1 GHz, 0.316 μ Vs for 150 kHz to 30 MHz, 13.5 μ Vs for 9 kHz to 150 kHz.

General Specifications

	ESA-E spectrum analyzer	EXA signal analyzer
	E4402B/E4404B/E4405B/E4407B	All frequency ranges
Temperature range		
Operating	0 to +55 °C	0 to +55 °C
Storage	-40 to +75 °C	-40 to +70 °C
Disk drive	10 to +40 °C	NA
EMI compatibility		
	Conducted and radiated interference is in compli- ance with CISPR Pub. 11/1990 Group 1 Class A. Conducted and radiated interference is in compli- ance with CISPR Pub. 11/1990 Group 1 Class Ba (Option 060)	Complies with European EMC Directive 2004/1 08/EC IEC/EN 61326-1 or IEC/EN 61326-2-1 CISPR Pub 11 Group 1, class A AS/NZS CISPR 11ª ICES/NMB-001 This ISM device complies with Canadian ICES- 001. Cet appareil ISM est conforme a la norme NMB-001 du Canada.
Military specifications		
	Type tested to the environmental specifications of MIL-PRF-28800F Class 3	Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3
Power requirements		
AC operation on (line)	90 to 132 Vrms, 47 to 440 Hz 195 to 250 V rms, 47 to 66 Hz Power consumption < 300 W	100 to 120 V, 50, 60 or 400 Hz 220 to 240 V, 50 or 60 Hz Power consumption < 350 W
Standby (line)	Power consumption < 5 W	Power consumption < 20 W
DC operation	12 to 20 Vdc, < 200 W power consumption	NA
Data storage (nominal)		
Internal ^b	200 traces or states/8.0 MB	
External	3.5" in, 1.44 MB, MS-DOS	80 GB Supports USB 2.0-compatible memory device
Memory usage (nominal)		
State	16 kB°	
State plus 401- point trace	20 kB°	
Display resolution ^d	640 x 480	1024 x 768

a. Meeting Class A performance during DC operation.

b. For serial numbers < US414400 or MY41440000, 1 MB without Option B72, 8 Mb with Option B72.

c. 401 sweep points. The size of a state will increase depending on the installed application(s).

d. The ESA-E LCD display is manufactured using high precision technology. However, there may be up to six bright points (white, blue, red or green in color) that constantly appear on the LCD screen. These points are normal in the manufacturing process and do not affect the measurement integrity of the product in any way.

General Specifications (continued)

	ESA-E spectrum analyzer		EXA signal analyzer
Inputs/Outputs			
Front panel			
Input RF	50 Ω type N (f), or 50 Ω A	PC 3.5 (m) (Option BAB)	50 Ω type N (f)
Probe power	+ 15 Vdc, –12.6 Vdc at 15 nominal)	0 mA maximum (characteristic/	+ 15 Vdc, –12.6 Vdc at 150 mA maximum (characteristic/nominal)
External keyboard	6-pin mini-DIN, PC keybo (for entering screen titles		Compatible with USB 2.0
Rear panel			
10 MHz REF OUT	50 Ω BNC (f), > 0 dBm (ch	naracteristic)	50 Ω BNC (f), nominal
10 MHz REF IN	50 Ω BNC (f), -15 to +10 c	dBm (characteristic)	50 Ω BNC (f), nominal
GATE TRIG/EXT TRIG IN	BNC (f), 5 V TTL		BNC (f), 5 V TTL
GATE / HI SWP OUT	BNC (f), 5 V TTL		NA
VGA OUTPUT	VGA compatible monitor, 15-pin mini D-SUB		VGA compatible monitor, 15-pin mini D-SUB
Interfaces			
GPIB interface IEEE-488 bus connector	Option A4H		Standard
Serial interface	Option 1AX, RS-232, 9-pin D-SUB (m)		NA
Parallel interface	Option A4H or 1AX 25-pin D-SUB (f) printer port only		NA
I/O connectivity software			
	IO Libraries Suite (www.keysight.com/find/	ïosuite)	IO Libraries Suite (www.keysight.com/find/iosuite)
Dimensions			
Width to outside of instrument handle	416 mm (16.4 in)		426 mm (16.8 in)
Overall height	222 mm (8.75 in)		177 mm (7.0 in)
Depth from front frame to rear frame	409 mm (16.1 in)		368 mm (14.5 in)
Weight			
	E4402B	E4404B/E4405B/ E4407B	All EXA signal analyzers
Instrument	15.5 kg (34.2 lbs)	17.1 kg (37.7 lbs)	16 kg (35 lbs) nominal
Shipping	27.4 kg (60.4 lbs)	31.9 kg (70.3 lbs)	28 kg (62 lbs) nominal

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/quality

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/esa

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

(877) 894 4414
55 11 3351 7010
001 800 254 2440
(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	0800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

For other unlisted countries: www.keysight.com/find/contactus (BP-07-10-14)

This information is subject to change without notice. © Keysight Technologies, 2011-2014 Published in USA, August 4, 2014 5989-9815EN www.keysight.com